MACHINE LEARNING FOR BUSINESS ANALYTICS: CONCEPTS, TECHNIQUES AND APPLICATIONS IN PYTHON (HC) | ศูนย์หนังสือจุฬาฯ
MACHINE LEARNING FOR BUSINESS ANALYTICS: CONCEPTS, TECHNIQUES AND APPLICATIONS IN PYTHON (HC)
สินค้าหมด
MACHINE LEARNING FOR BUSINESS ANALYTICS: CONCEPTS, TECHNIQUES AND APPLICATIONS IN PYTHON (HC)

MACHINE LEARNING FOR BUSINESS ANALYTICS: CONCEPTS, TECHNIQUES AND APPLICATIONS IN PYTHON (HC)

ผู้แต่ง : GALIT SHMUELI et al.

หนังสือปกแข็ง

฿ 4,032.00

4,480.00

ประหยัด 10 %

TAGS :

ข้อมูลหนังสือ

Barcode : 9781394286799

ISBN : 9781394286799

ปีพิมพ์ : 2 / 2025

ขนาด ( w x h ) : 0 x 0 mm.

จำนวนหน้า : 688 หน้า

หมวดหนังสือ : สถิติศาสตร์

รายละเอียดสินค้า : MACHINE LEARNING FOR BUSINESS ANALYTICS: CONCEPTS, TECHNIQUES AND APPLICATIONS IN PYTHON (HC)

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in Python is a comprehensive introduction to and an overview of the methods that underlie modern AI. This best-selling textbook covers both statistical and machine learning (AI) algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, network analytics and generative AI. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the second Python edition of Machine Learning for Business Analytics. This edition also includes:

  • A new chapter on generative AI (large language models or LLMs, and image generation)
  • An expanded chapter on deep learning
  • A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
  • A new chapter on responsible data science
  • Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
  • A full chapter of cases demonstrating applications for the machine learning techniques
  • End-of-chapter exercises with data
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in AI, data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

สินค้าที่เกี่ยวข้อง

คะแนนรีวิวจากผู้ซื้อจริง

0 เต็ม 5 ดาว
0 คน
0
0
0
0
0